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ABSTRACT 

For first order linear impulsive differential equations with a deviating 

argument  a number  of oscillation theorems are proved (of the type of the 

Sturmian Theorem).  Various criteria for oscillation or non-oscillation of 

the solutions of these equations are found. The oscillatory properties of 

some concrete equations of the type considered are investigated. 

1. I n t r o d u c t i o n  

The study of the oscillatory properties of differential equations and inequalities 

with deviating argument in recent years still arouses growing interest. 

Monographs [3], [7], [10] and [12] are devoted to this object. 
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In relation to the oscillatory properties of impulsive differential equations, how- 

ever, such literature is absent although these equations are being investigated very 

actively (see monographs [.2], [4] and [5]). We shall just note the paper [9] where 

the problem itself is formulated and some initial results are obtained. In fact, 

the oscillatory properties of impulsive differential equations (without deviating 

argument) are described, so far as we know, in the single paper [1]. 

In the present paper a number of criteria are obtained for oscillation or non- 

oscillation of the solutions of first-order impulsive differential equations with de- 

viating argument. This is done by extending to impulsive differential equations 

the Sturm-like Comparison Theory elaborated in [6] and [7, Chapter 4]. The 

oscillatory properties of some concrete impulsive differential equations with one 

retarded argument are also investigated in detail. 

2. M a i n  resul t s  

2.1. THE STURM-LIKE COMPARISON THEORY. Let ~ ---- ( - ~ , + c r  and ~ = 

[0, +cr Consider the following two linear differential operators: 

m 

L[x] -- x ' ( t )  + E a ~ ( t ) x [ r i ( t ) ] ,  t C R, 

m 

; [y ]  = + q (tlb [q  t E ~ .  

In particular, for b~(t) = ai( t ) ,  i = 1 . . . . .  m, the corresponding operator [, is 

denoted by 

m 

L*[y] = - y ' ( t )  + Eq~( t )a i[q i ( t ) ]y[q i ( t ) ] ,  t �9 ~.  
i=1 

Suppose that  the following conditions (A) hold: 

A1. The functions ai, bi: ~ --+ ~, i = 1 , . . . ,  m are piecewise continuous in ~. 

A2. The functions ri: ~ --~ ~, i = 1 , . . . , m  are monotone increasing and 

continuously differentiable in ~, and the functions qi: ~ --~ R, i = 1 , . . . ,  m are 

their inverse ones: r i (qi ( t ) )  = t, t E R, i = 1 , . . .  , m .  
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Let J = (~, r~) be a finite interval. Following [8] we define the subsequent sets: 

= {t R: t =  J}, i =  1, . .  b ~ m ~  

q i ( J ) = { t C R :  t=q~(s) ,  s E J } ,  i = 1  . . . . .  m, 
732 m 

i = 1  i = 1  
m m 

Eezt(J) = U [ q i ( J ) \ J ]  = ( U q , ( J ) ) \ J .  
i = l  i = 1  

In particular, if ri(t) <_ t for t E t~ and ~ < r~(~), ri(~) < rh then 

ri(J) \ J = (r i (() , ( ] ,  qi(J) \ J = [~, q~O?)). 

Let the sequence {tj}~= 1 be given for which 

(1) t l  < t2 < t3 < " ' ' ,  lim tj = +oo. 
j ~  

Consider the linear impulsive differential equation with deviating argument 

(2.i) L[x] = 0, t # t j ,  

(2.ii) x(t +) = c~jx(t-f ) 

and the associated impulsive differential inequalities 

L[x] < O, t # tj, 

�9 (t~?) = ~ x ( t ; )  

(3.i) 

(3.ii) 

and 

(4.i) 

(4.ii) 

1;[y] >__ 0, t r tj, 

y(tT) = Zjy(t2).  

L e t ~ < r t < o c a n d  J = ( ~ , ~ ) .  

Detlnition 1: The function x(t) is said to be a s o l u t i o n  of equation (2) in the 

interval J if: 

1. x(t) is defined in J U Fe~t(J). 
2. x(t) is absolutely continuous in each interval (ti, t i+l)  V~ J, i = 1, 2 . . . .  , and 

it satisfies (2.i) for t E J, t # tj almost everywhere. 

3. x(t) satisfies (2.ii) for t = tj E J. 
The solution of the inequality (3) is defined analogously. 
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Definition 2: The function y(t) is said to be a so lu t ion  of inequality (4) in the 

interval J if: 

1. y(t) is defined in J U E~t (J ) .  

2. y(t) is absolutely continuous in each interval (ti, ti+l) M J, i -- 1, 2 . . . . .  and 

it satisfies (4.i) for t C J, t ~ tj almost everywhere. 

3. y(t) satisfies (4.ii) for t = tj C J. 

Henceforth, we suppose for the sake of definiteness that the solutions of equa- 

tion (2) and inequalities (3) and (4) are continuous from the left at t = tj E J: 

x( t~)  = x( t j )  (y(t-;) = y(t~)). 

Definition 3: (See [13]) The finite interval J = (~,7) is said to be a la rge  

pos i t i ve  h e m i c y c l e  of inequality (4) if 

(5) ri(7) > ~, ri(~) < 7, i =  l , . . . , m ,  

and there exists a solution y(t) of inequality (4) in the interval J such that  

y(~+) = y ( 7 - )  = 0; ~(t) > 0, t c J. 

The notions of la rge  pos i t ive  h e m i c y c l e  for equation (2) and inequality (3) 

are defined analogously. 

Det~nition 4: (See [7]) The finite interval J = (~, ~7) is said to be a r e g u l a r  

pos i t i ve  h e m i c y c l e  of inequality (4) if relations (5) are valid and there exists a 

solution y(t) of inequality (4) such that 

(6) Y ( ~ + ) = Y ( 7 - ) = 0 ;  y(t) >0,  t e  J; y(t)<_O, t e E e x t ( J ) .  

In this case, the interval J U Eext(J) is said to be an e x t e n d e d  r e g u l a r  

h e m i c y c l e  of inequality (4). 

Definition 5: The finite interval J = (~, 77) is said to be a r eg u l a r  pos i t i ve  

h e m i c y c l e  of equation (2) (or inequality (3)) if relations (5) are valid and there 

exists a solution x(t) of equation (2) (or inequality (3)) in the interval J such 

that: 

x ( C )  = x ( 7 - )  = 0; x(t) > o, t c J; x(t)  <_ o, t c Fext(J). 

In this case, the interval J U Fext(,]) is said to be an e x t e n d e d  r e g u l a r  

h e m i c y c l e  of equation (2) (or inequality (3)). 
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Example 1: 
equation 
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The interval J = (0, 7r) is a regular positive hemicycle for the 

�9 

since x = sin t is a solution of this equation and 
"Tr 7f 7r 

r l ( t )  = t - - _ ~ ,  r l (Tr)=-~ > 0 ,  7 r> r l (0 )  = 

7r 0 x ( 0 ) = x ( T r ) = 0 ;  x(t)>O, t e  J; x(t)<O, t e F ~ t ( J ) = ( - ~ ,  1. 

The results obtained below are based on the following 

LEMMA 1: Let J = (~, ~) be a finite interval and: 
1. The function x(t) is piecewise continuous in J U F~t( J). 
2. The function y(t) is piecewise continuous in J U E~t( J). 
3. x(t) and y(t) are absolutely continuous in each interval (ti,ti+l) n J, 

i = 1, 2 , . . . ,  and for t = tj E J they satisfy the relations 

= = (7)  

Then 

(8) 

Proo~ 

(9)  

{y(t)L[x(t)]- x(t)L[y(t)] }dt = 
J 

~ {  / [ai(t)-bi(t)]x[ri(t)]y(t)dt+ / ai(t)x[ri(t)]y(t)dt 
i=1 JAq~(J )  J \ q ~ ( J )  

- f b~(t)x[ri(t)lY(t)dt} 
ql ( J )  \ J 

+ E x(t;)y(t-~)(1 - aj~j) + x(~-)y(~-) - x(~+)Y(C)- 

We obtain formula (8) taking into account the relations 

f {yL[x]- xL[y]}dt= f (x'y+ xy')dt 
J J 

+~/aix[r i]ydt -~/q~bi[qi]xy[qi]dt ,  
i = l  j i = l  j 

x(zI-)yO?-) - x(~+)Y(~ +) - - / ( z ' y  + xy')dt 
J 

+ E [ x(t+)y(t+) - x(t;)y(ty)], 
~<t~ <7 
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relation (7) and changing the variables qi(t) = s in the integrals of the last sum 

in (9). | 

THEOREM 1 (Sturm-like Comparison Theorem): Suppose that: 

1. The interval J = (~, ~) is a regular positive hemicycle for the inequality 

(4). 

2. The following inequalities are valid: 

(10) bi(t)>_O, t � 9  i = l , . . . , m ,  

(11) ai(t)>_O, t � 9  J \ q i ( J ) ,  i = l , . . . , m ,  

(12) ai(t)>_bi(t), t � 9  i = l , . . . , m ,  

(13) 1 - ajt3j >_ O, tj �9 g. 

3. A t  least one of  the inequalities (13) is strict or at least one of the inequalities 

(10) - (12) is strict in some subinterval of the respective sets qi(J) \ J, 

J \ qi(J), J N qi(J). 

Then: 

1. Inequality (3) has no solution x(t) which is positive in J U Fr J). 

2. Equation (2) has no solution x(t) which preserves its sign in J1 -- 

J u F~xt(J). 

Proof." 1. Suppose that  Assertion 1 of Theorem 1 is not true, i.e., there exists a 

solution x(t) of inequality (3) which is positive in J U Fe~t(J). 

Since J is a regular positive hemicycle for inequality (4), then there exists a 

solution p(t) of (4) which satisfies (6). 

The solutions x(t) and y(t) satisfy the conditions of Lemma 1, thus they satisfy 

relation (8). 

The left-hand side of (8) is nonpositive by (3), (4) and (6). 

In view of conditions 2 and 3 of Theorem 1 and the relations 

t E  J n q i ( J ) ~ r i ( t ) E  J ~ y ( t ) > O ,  x[ri(t)]>O; 

t E J \ q i ( J )  ~ ri(t) E F~xt(J) ~ y(t) > O, x[r~(t)] > O; 

t e qi(J) \ J ~ t e E ~ t ( J ) ,  ri(t) �9 J ~ y(t) <_ O, x[ri(t)] > O 

we conclude that  the right-hand side in (8) is positive, which leads to a contra- 

diction. Thus Assertion 1 is proved. 

2. If we suppose that  equation (2) has a solution qo(t) which is negative in 

J U F~ t ( J ) ,  then x = -qo(t) will be a solution of equation (2) which is positive 
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in J U F~t(J),  but this is impossible by Assertion 1. Consequently, equation (2) 

has no solution which preserves its sign in J U F~t(J). | 

Remark 1: Assertion 2 of Theorem 1 means that each solution x(t) of equation 

(2) which is defined in -/1 = J U F~t(J) either changes its sign in J1 or has at 

least one zero in J1- 

In the case when aj  > 0, tj E J1, then each such solution x(t) has at least one 

zero in J1 because then it is not possible for x(t) to change its sign in tj E J1 if 

x(tj) r o. 
In the case when o~j < 0 for some tj C "11, the solution x(t) of equation (2) 

may change its sign at t = tj without vanishing anywhere in J1. 

Example 2: 

(14) 

Consider the equations 

7V 
: 0 ,  

and 

t e R ,  tY~2j ,  

j E Z  

- y ' ( t ) + y  = 0 ,  tC]~, t r  2J, 
(15) 

y ( 2 j + ) - - y ( 2 j ) ,  j e Z .  

Here al(t) ==- bl(t) -= 1, ~j = 1, c U -- - e  -~/2 < 0, rl(t) = t-Tr/2, ql(t) = t+Tr/2. 
It is easy to check that equation (15) has a solution y = cost and J -- ( - ~ ,  2) 

is a regular positive hemicycle, and Fext(J) --- (-Tr,-3], Eext(J) = [-~, 7@ 

By Theorem 1, equation (14) has no solution x(t) which preserves its sign in 

51 = g 0 F e x t ( J )  = (-Tr,  ~) .  

A verification shows that the function 

x(t) = (-1)Je t -} j ,  t e 2j,  +1) 

is a solution of equation (14) which is positive in each interval of the form 

(~rn, r n  + ~], n E Z, and is negative in the intervals (~rk - ~, 7rk], k E Z, i.e., x(t) 
is a solution which changes its sign without vanishing anywhere. 

Consider the equation 

L[y] = 0, t ~ t j ,  
(16) =  jy(t ) 
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and the inequalities associated with it 

(17) L[y] <_ O, t # tj, 

y ( q )  =  jy(t;) 
and 

L[x] > 0, t • t j ,  

(18) x(t  +) = a j x ( t ; ) .  

THEOREM 2: Suppose that: 

1. The interval J = (G ~/) is a regular positive hemicycle for inequality (18). 

2. The following inequalities are valid: 

(19) ai(t)>_O, t E  J \ q i ( J ) ,  i = l , . . . , m ,  

(20) bi(t) >_ O, t E q~(J) \ J, i = l , . . . , m ,  

(21) bi(t)>_ai(t), t E J N q i ( J ) ,  i = l , . . . , m ,  

(22) 1 - ajflj < O, tj �9 J. 

3. A t  least one of the inequalities (22) is strict or at least one of the inequalities 

(19) - (21) is strict in some subinterval of the respective sets J \ qi(J), 

qi(J) \ J, J N qi(J). 

Then: 

1. Inequality (17) has no solution y(t) which is positive in Y U Eext( Y). 

2. Equation (16) has no solution y(t) which preserves its sign in Y U Er d). 

The proof of Theorem 2 is analogous to the proof of Theorem 1. 

As is known, the Sturmian Zeroes-Separation Theorem in its classical formula- 

tion is not valid for differential equations with a deviating argument. An exception 

is just a narrow class of delay differential equations of second order whose mani- 

folds of solutions are two-dimensional (see [6]). This class does not contain quite 

usual delay differential equations with constant coefficients and constant delays. 

In [7] and [8] an essentially new approach is suggested for the formulation of the 

respective analogue of this theorem for delay differential equations. 

Below, this approach is extended to impulsive delay differential equations. 

Obviously conditions (10)-(13) of Theorem 1 and (19)-(22) of Theorem 2 are 

met if the following conditions are satisfied: 

(23) a~(t)=-b~(t)>O, t E K  i = 1  . . . .  ,m; 1 - a j f l j = 0 ,  j E N .  

As a corollary of Theorems 1 and 2 we obtain the following assertion: 
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THEOREM 3 (The Sturm-like Zeroes-Separation Theorem): Let conditions (23) 

hold. 

Then the extended regular hemicycle of one of the equations 

(24) L[x] = O, t r ti, x(t +) = a jx ( t ; ) ,  

(25) L*[y] = O, t r tj, y(t +) = a ; l y ( t ; )  

cannot be contained in a large positive hemicycle of the other equation. 

Proof: The converse assumption leads to a contradiction with one of Theorems 1 

and 2. | 

Based on Theorems 1, 2 and 3, we shall formulate some analogues of Stur- 

mian Oscillation and Non-oscillation Theorems for the scalar linear differential 

equations with deviating argument. 

Let x(t) be a solution of equation (2) defined for t >_ ~. 

Definition 6: The solution x(t) of equation (2) is said to be nonose i l l a t ing  if 

there exists T _> ~ such that  x(t) preserves its sign for t > T. 

Definition 7: The solution x(t) of equation (2) is said to be osci l la t ing if for 

any T _> ~, x(t) does not preserve its sign for t > T. 

Definition 8: The solution x(t) of equation (2) is said to be r egu la r ly  

osci l la t ing if for any T _> ~ there exists a regular positive hemicycle J for 

equation (2) such that  J C (T, oc). 

The notions of nonoscillating, oscillating and regularly oscillating solutions of 

equations (16), (24) and (25) are defined analogously. 

As a corollary of Theorem 1 we obtain 

THEOREM 4 (The Sturm-like Oscillation Theorem): Let the intervals Jn = 

( ~ ,  ~l~) with lirn~_-.oo ~n = +oo be regular positive hemicycles of equation (16) 

and on each of them let conditions 2, 3 of Theorem 1 hold. 

Then all solutions of equation (2) are oscillating. 

We shall note that  the assumption of Theorem 4 is fulfilled if equation (16) 

has a regular oscillating solution. In view of this fact we deduce the following 

corollaries of Theorems 1, 2 and 4. 
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COROLLARY 1: For t >_ T let conditions 2 and 3 of Theorem 1 hold. Then: 

1. I f  equation (16) has a regular oscillating solution, then all solutions of 

equation (2) are oscillating. 

2. I f  equation (2) has a nonoscillating solution, then equation (16) has no 

regular oscillating solution. 

COROLLARY 2: For t >_ T let conditions 2 and 3 of Theorem 2 hold. Then: 

1. I f  equation (16) has a nonoscillating solution, then equation (2) has no 

regular oscillating solution. 

2. I f  equation (2) has a regular oscillating solution, then all solutions of 

equation (16) are oscillating. 

These corollaries applied to equations (24) and (25) take on the form: 

COROLLARY 3: Let conditions (23) hold. Then: 

1. I f  equation (25) has a nonoscillating solution, then equation (24) has no 

regular oscillating solution. 

2. I f  equation (24) has a nonoscillating solution, then equation (25) has no 

regular oscillating solution. 

3. I f  equation (25) has a regular oscillating solution, then all solutions of 

equation (24) are oscillating. 

4. I f  equation (24) has a regular oscillating solution, then all solutions of 
equation (25) are oscillating. 

2.2. FORMATION OF A BANK OF "STANDARD" EQUATIONS. The theory 

expounded above can be applied to obtaining effective criteria for oscillation 

of all solutions of equations of the form (2) and to the estimation of the length of 

the intervals in which these solutions preserve their sign only if sufficiently many 

"standard" equations of type (16) having a regular oscillating solution have been 

studied. Moreover, the criterion for existence of such a solution must be easy 

to verify. In this subsection we shall investigate the oscillatory properties of 

equations of types (2) and (16) having one retarded argument. 

Consider the equation of the type (2) 

x'(t) + a(t)x[r(t)] = O, t # tj, 
(26) x(t  ) =  jx(t;) 

having one retarded argument r(t): 

r ( t ) < t ,  t E R ,  l i m r ( t ) = + o c .  
t---*~ 
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As above we suppose that the moments (tj }~=1 satisfy (1) and that the function 

r(t) is a continuously differentiable and monotone increasing function having an 

inverse one q(t): r[q(t)] =_- t, t �9 R. 

The role of equation (16) is played by the equation 

(27) 
- y ' ( t )  + q'(t)b[q(t)]y[q(t)] = O, t # tj, 

y ( f f )  = Z jy ( t ; ) .  

The next lemma provides the possibility to construct equations of the type 

(27) having a regularly oscillating solution. 

LEMMA 2: Let the finite interval J = (~, ~1) and the function ~(t) satisfy the 

following conditions: 

1. ~j > 0 for tj �9 (~, ~) and r(~) > (. 

2. ~(t) is continuous in (r(~), q(~l)) and 

~7 

(28) / ~o(s)ds = or, 

t 

(29) 0 < / ~ ( s ) d s  < 7r, 

t 

(30) o _< f v(s)ds <_ ~, 

t 

(31) 0 < f ~(s)ds < It, 

~(t) 

t �9 (~,,7), 

t �9 [~,q(~)), 

t �9 (~,q(~)). 

Then the interval J = (~, 71) is a regular positive hemieycle for equation (27) 

in which 

r(t)<_t~<t sin f ~(s)ds r(t) 
~(t) 

Proo~ From condition 1 and (31) it follows that the function b(t) is defined in 

(~, qOl)) = g U S~xt(J). 



178 D. BAINOV, YU. I. DOMSHLAK AND P. S. SIMEONOV Isr. J. Math. 

A straightforward verification shows that the function 

(33) y ( t ) =  I I ~ j e x  p q o ( s ) c o t [ / ~ p ( z ) d z  ds sin ~p(s)ds 
tj <t ~ 

is a solution of equation (27) in J. 

Taking into account condition 1, (28) and (29), we conclude that J is a large 

positive hemicycle of equation (27). 

Since by condition 1 and (30) it follows that y(t) < O, t �9 Ee~t(J) = [~h q(n)), 

then J is a regular positive hemicycle of equation (27). | 

For construction of various equations (27) having a nonoscillating solution we 

shall use the following 

LEMMA 3: Let the function r be continuous for t >_ T and in equation (27) 

let flj > O, tj >_ T and let b(t) have the form 

Then equation (27) has a nonoscillating solution 

(34) y ( t ) =  I-[  ~jexp ~,(s)ds . 
T <_t.i < t 

Lemma 3 is proved by a straightforward verification. 

THEOREM 5: Suppose that: 

1. The finite interval J -- (~, 71) and the functions r(t) and ~(t) satisfy the 

conditions of  Lemma 2 and 

(35) ~(t) ___ 0, t e (r(~), ~] u [r(~),,7). 

2. In equation (26) the sequence {aj}  is positive and together with the func- 

tion a(t) satisfies the inequality 

(36) 

r(t)<_tj<t sin f ~o(s)ds ~(t) 
r(t) 
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for t c 

3. One of the inequalities (35) or (36) is strict in some subinterval of the 

respective sets (r(~), ~] U [r(r/), r/) and ({, r/). 

Then each solution of equation (26) has at least one zero in the interval 

(r(~), ~?) = J t2 Fext(J). 

Proo~ Theorem 5 is a corollary of Theorem 1 and Lemma 2 with ~j = a~ -1. 
| 

An immediate corollary of Theorem 5 is the following assertion: 

COROLLARY 4: Let the function.~(t) and equation (26) be defined for t > T and 

the conditions of  Theorem 5 hold for the sequence of finite intervals J~ -= (~n, ~ )  

with lim~-oo ~ = +oo. 

Then all solutions of equation (26) are oscillating. Moreover, each solution of 

(26) has at least one zero in the interval ( r (~) ,  ~ ) .  

Sometimes it is convenient to use the following particular case of Corollary 4. 

COROLLARY 5: Assume that: 

1. The function ~(t) is continuous for t >_ T and 

O 0  

(37) ~(t) >0, t > T, . / ~ ( s ) d s  = oc, 

t 

(38) 0 < / ~(s)ds < 7r, t >_ T. 

~(t) 

2. In equation (26) the sequence {a j}  is positive for t j  > T and together with 

the function a(t) satisfies inequality (36) for t >_ T. 

Then all solutions of  equation (26) are oscillating. 

THEOREM 6: Assume that: 

1. The function r  is nonnegative and continuous for t >_ T. 

2. In equation (26) the sequence {aj } is positive for tj >_ T and together with 

the function a( t ) satisfies the inequality 

t>_T. 

~(t)<_t~ <t ~(t) 
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3. One of the two inequalities in (39) is strict. 

Then equation (26) has no regular oscillating solution. 

Proof'. Theorem 6 is a consequence of Corollary 2 and Lemma 3 with/3j = a y  1 

applied to equations (26) and (27). | 

We shall note that  for a different choice of the functions qo and r in Theorems 5 

and 6 we can obtain different criteria for oscillation of all solutions or absence of 

a regular oscillating solution of equation (26). Let us now consider some of these. 

Consider the impulsive equation with constant delay 

x ' ( t ) + a ( t ) x ( t - a ) = O ,  t>_O, t • t j ,  

(40) x( t +) = a jx (  t-f ) 

w h e r e a > 0 a n d a j  > 0 f o r t  j>_0.  

Set in Theorem 5 ~o(t) - v, t _> 0. Then as a particular case of Theorem 5 we 

deduce 

COROLLARY 6: Let aj > 0 for tj >_ O. Then: 

1. I f  0 < v < -~ and in some interval (To, To + ~) we have ~T 

II  

(41) a(t) H a ;  1 >- s i n ( v a ) e x p ( -  vacot (va) ) ,  
t - - a ~ _ t j < t  

then each solution of equation (40) has at least one zero in (To - (7, TO + ~ ). 

2. If there exists a sequence 0 < < and intervals + ) C 

with lirnn_~ rn = +co, in which (41) is met, with v = vn, then each 

solution of equation (40) oscillates and has at least one zero in each of the 

intervals (rn - a, rn + ~ ). 

Let aj > 0 for tj > 0 and let the following condition hold: COROLLARY 7: 

Then all solutions of equation (40) are oscillating. 

Proof: 

1 

e(7 

Corollary 7 follows from Corollary 6 and the fact that 

lim .# e x p ( - # c o t # )  = 1 - - o  

~--*0 Sln ~ - e 

Set r  = 1/a in Theorem 6 and obtain 
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COROLLARY 8: Let aj > 0 for tj > T and for t > T let the condition 

(43) 0 < a(t) [ I  a ;  1 < I__ 
eo" 

t - - a < t  i < t  

hold and let one of the inequalities in (43) be strict. 

Then equation (40) has no regular oscillating solution. 

Consider the equation 

(44) 
x(t +) =  jx(t 7 ) 

f o r t > 0 ,  w h e r e A > l a n d a j > 0 f o r t j > 0 .  

Equation (44) is a typical representative of an equation with unbounded 

increasing delay ( l imt~+~[t  - r(t)] = + ~ ) .  The oscillatory properties of this 

equation in the ease without impulses (aj  - 1) have been studied before, for 

instance in [7], [11], [14]. 

Set in Theorem 5 qo(t) = v/t ,  0 < v < 7r/log A. Then we have 

t q(t) 

r ( t ) = i ,  q ( t ) = A t  , f  (s)ds= f  (z)dz=,log  
r(t) t 

and 

f ~(s)ds = ~:~ = ~exp ~-. 7r 
v 

Inequality (36) takes the form 
V 

(45) ta(t) H a-J 1 >- sin(ulogA) e x p ( - u l ~ 1 7 6 1 7 6  
t/,k<__t i < t  

Consequently, the following assertion is valid: 

COROLLARY 9: Let aj  > 0 for t j  > O. Then: 
X 7r 1. I f  0 < v < 7r/log A and inequality (45) is valid in some interval (to, Toe p~),  

then each solution of equation (44) has at least one zero in ( ~ ,  r0exp~). 

2. / f  there exists a sequence {u,~}, 0 < un < 7r/logA and intervals 

(rn,r~exp~-~) C ~ with lim,~_~o r~ = + ~ ,  in which (45) is valid, with 

v = u,~, then each solution of equation (44) oscillates and has at least one 
~ -  X 7r zero in each of the intervals ( ~ , rne p ~ ) .  

In particular, passing to the limit in (45), we obtain 
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COROLLARY 10: Let aj > 0 for tj > 0 and 

(46) liminf{ta(t) t/A<tj<t a ; X }  

Then al! solutions of equation (44) oscillate. 

D. BAINOV, YU. I. DOMSHLAK AND P. S. SIMEONOV 

1 > - -  
e log A" 

Isr. J. Math. 

qo(t) = vq'(t)ao[q(t)], 0 < v < vo 

and by a change of variables this condition takes the form 

(50) 

a(t) H a'; I>- vao(t) e x p -  

r(t)<t j <t t tan sin (u q(t) [ ao(s)ds) 

vao(s)ds ) 
[ q(s) \ 
Iv [ ao(z)dz) 

(49) 

Set in (36) 

O < ao(t) <_ a(t), t >_ T. 

The constant 1/(elogA) in (46) is the best as shown by the following Corol- 

lary 11 - -  a particular case of Theorem 6 with r = 1/(t log A). 

COROLLARY 11: Let aj > 0 for tj >- T > 0 and 

_ 1 

(47) 0 <_ ta(t) H aJ 1 <- elog----A' t >- T 
t/A<tj<t 

and let one of the inequalities in (47) be strict. 
Then equation (44) has no regularly oscillating solution. 

Remark 2: We shall note that in Corollaries 7-10 the positive sequence {aj} 

and the function a(t) jointly influence the oscillatory properties of the respective 

equations, and their influences can compensate for each other. That is why {aj } 
can both be unbounded and satisfy lim infj--,oo a 5 = O. 

Also in these corollaries there are no restrictions of the type 

OO 

(48) a j  >- 1, E ( a j  - 1) < oo 

which are imposed in [9]. In our opinion, condition (48) arises not from the 

problem itself but from the method for solving it used in [9]. 

Consider again equation (26). Let ao(t) be'a continuous function and 
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Taking into account (49), we conclude tha t  (50) is met  if 

(51) 

1 (/) 
F ( u , t ) - -  1-I ~21s in  ao(s)d 

12 
r ( t )<t~<t  

exp - / - ~ ( 7 -  X-I > 

t t tan  t v f ao(z)dz))  

The interval J -- (~, rl) which satisfies condition (28) must be such tha t  

n n q(n) 

/ ~(s)ds = u i q'(s)ao[q(s)]ds = u i ao(~)d~ = Tr. 
( q(~) 

Thus we have proved the following theorem: 

THEOREM 7: Suppose that: 

1. The sequence {aj} is positive for tj >_ T. 

2. The function ao(t) is continuous for t >_ T and 

0 < ao(t) < a(t), t >_ T, 
q(t) 

< / ao(s)ds <_ M, t >_ T, 0 
t 

(X? 

i ao(s)ds = co. 

3. In the interval J = (~, ~l) condition (51) is valid with u e (0, TriM) and 

q(n) 

i ao(s)ds >_ ~r 
l] 

q(~) 

Then each solution of equation (26) has at least one zero in (r(() ,  rl). 

COROLLARY 12: Let conditions 1 and 2 of  Theorem 7 hold and 

(52) 
lim in fF(0+ ,  t) = 
t--*q-~ 

{ 7 -= l iminf  I I  a ;  1 ao(s)ds 
t---*q-oo 

r( t)~_tj<t  t 

(q i a0/s) s /} �9 exp q(8) / > 1. 

ao(z) z) 

1. 
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Then all solutions of equation (26) are oscillating. 

Proof From (52) it follows that there exist 5 > 0 and t~ > T such that  

F (0+ , t )  > 1 + 8 for t > tz. On the other hand, F(0+,  t) = lim,__.o+ F(v,t). 
Thus there exists Vo > 0 such that (51) is valid for 0 < v < vo. Then the 

assertion of Corollary 12 follows from Theorem 7. | 

As a corollary of Theorem 6 we deduce the following assertion which shows 

that  condition (52) is precise enough. 

COROLLARY 13: Suppose that: 
1. The sequence {aj} is positive for tj ~ T. 
2. The function a~ is continuous for t >_ T and 

O < a(t) < a~ t > T, 

(53) q(~) 
a~ > ,0, > T, t 

t 

(54) �9 exp 

r(s) 

3. One of the inequalities in (53) or (54) is strict. 
Then equation (26) has no regularly oscillating solution. 

Proof In Theorem 6 set 

[ q(t) ~ --1 
r = q'(t)a~ l [ a~ ) 

Then inequality (39) takes on form 

H G 1 f a~ a8 a~ 
r(t)<tj<t r(t) t ] a~ 

) a(t) H aJ -1 -< a0(t) a~ ds exp 
r(t)<tj<t 

- (t) 

<1, t>_T. 

I q(t) 0 

aO(zl z) 
and this inequality is valid for t _> T by virtue of (54). Consequently, by 

Theorem 6, equation (26) has no regularly oscillating solution. | 
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2.3. OSCILLATORY PROPERTIES OF NONLINEAR IMPULSIVE DIFFERENTIAL 

EQUATIONS WITH A DEVIATING ARGUMENT. In this subsection we shall apply 

some of the results obtained above to the study of the oscillatory properties of 

the nonlinear differential equation with one deviating argument 

z ' ( t ) + f ( t , z ( t ) , z [ r ( t ) ] ) = O ,  t > T ,  t C t j ,  

(55) z(t~;) = f j (z( t;)) .  

THEOREM 8: Suppose that: 

1. The function r(t) is monotone increasing and continuously differentiable in 

R, having an inverse one q(t) : r[q(t)] =- t, t E ~. 

2. The function f ( t ,  u, v) is such that i f  z(t) is an absolutely continuous func- 

tion in each interval (ti, t~+l) N [T, ec), i = 1, 2 , . . . ,  then the function 

f ( t ,  z(t), z[r(t)]) is pieeewise continuous for t >_ T. 

3. The interval J = (~, 7) C (T, ec) is a regular positive hemicycle of equation 

(27). 
4. The following inequalities are valid 

v f ( t , u , v )>_b( t ) v  2, t e J ,  (u,v) E R  2, 

(56) ufj(u)13j <_ u 2, tj E J, u E 

b(t) > o, t �9 J u E~xt (J )  

and one of these inequalities is strict. 

Then equation (55) has no solution which preserves its sign in J U Fext( J).  

Proof: Suppose that  this is not true, i.e., that equation (55) has a solution z0(t) 

which preserves its sign in J LJ F~xt(J). 

Consider the linear equation 

x'(t) + f ( t ' z~176 x[r(t)] = O, t �9 J, t r tj, 
zo[~(t)] 

(57) 
x(t  + ) -  fJ~z~ ~ :-~ tj J. 

zo(t-;) ~ ~ )' �9 

Obviously, x = zo(t) is a solution of (57) in J. On the other hand, 

]( t ,  zo(t), zo[r(t)]) > b(t), t �9 J, 
a(t) = zo[r(t)] 

f j(zo(t;)) 
aj3j  - ~ •j <_ l, tj �9 J. 
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Consequently,  by Theo rem 1, equat ion (57) has no solution which preserves its 

sign in J U Fext(J) and we are led to a contradiction.  | 

COROLLARY 14: Suppose that: 

1. Conditions 1 and 2 of Theorem 8 hold. 

2. The inequalities (56) are valid for tj >_ T, t >_ T, (u, v) E R 2, and one of 

these inequalities is strict. 

3. Equation (27) has a regularly oscillating solution. 

Then all solutions of equation (55) which are defined in an infinite half-interval 

[[, c~) C [T, c~) are oscillating. 
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